## Bioaccumulation of Arsenic (As) in Fish & Toxicity of As Species

Charles O. Abernathy
HECD/OST
US EPA
Washington, DC

### **Topics**

- Methodology
- As Levels in Aquatic Organisms
- Available Data on Freshwater Species
- Uncertainties
  - As Speciation
  - Toxicities
- Summary

### Methodology for Deriving AWQC

- 1980
  - BCF (water exposure only) used to estimate bioaccumulation
- 2000\*
  - For inorganics & organometallics that do <u>not</u> biomagnify
     use Procedure 5
  - Field BAFs & Laboratory BCFs are considered equally
  - $-BAF = C_t / C_w$

\*see Methodology for Deriving AWQC for the Protection of Human Health (2000) for details on BAF framework

### **Does As Bioaccumulate in Fish?**

- Yes, but BAFs are small relative to many other organic & organometallic PBTs (e.g., PCBs, methyl-Hg)
- BAFs for tissues of upper trophic level freshwater & marine organisms range from ~ 5 to 5000 L/kg
- As does not appear to biomagnify (increasing concentration with increasing trophic level);
   BAFs for TL2 > TL3 > TL4

# As BAF Measurements in Freshwater Organisms

| Trophic<br>Level | Species Mean BAFs - Range (n) |                 |  |
|------------------|-------------------------------|-----------------|--|
|                  | Lentic                        | Lotic           |  |
| 2                | 10 to 19,000 (43)             | 7 to 3,800 (7)  |  |
| 3                | 4 to 95 (18)                  | 2 to 1,000 (20) |  |
| 4                | 45 to 46 (1)                  | 6 to 270 (2)    |  |

### **Chemical Species of As**

- Inorganic
  - Arsenite (+3)
  - Arsenate (+5)
- Organic
  - Arsenobetaine
  - Monomethyl Arsinic Acid (MMA, MSMA)
  - Dimethylarsonic Acid (DMA, Cacodylic Acid)
  - Arsenocholine
  - Arsenosugars
  - Arsenolipids

| TL3 & 4 Fish |          |           |      |      |         |
|--------------|----------|-----------|------|------|---------|
| Species      | Exposure | Inorganic | As   | As   | Organic |
|              | Туре     |           | (+3) | (+5) |         |
| Minnow       | Field    | NM        | -    | -    | 0.97    |
|              |          |           |      |      |         |
| Sweet        | Field    | NM        | _    | _    | 0.88    |
| Fish         |          |           |      |      |         |
| Salmon       | Field    | NM        | _    |      | 0.99    |

| As Speciation Data for TL3 & TL4 Fish |           |                           |         |         |         |
|---------------------------------------|-----------|---------------------------|---------|---------|---------|
| Species                               | Exposure  | Fraction of Total Arsenic |         |         |         |
|                                       | Туре      | Inorganic                 | As (+3) | As (+5) | Organic |
|                                       | Lab-Water |                           |         |         |         |
| Tilapia                               | (+3)      | 0.39                      | 0.25    | 0.14    | 0.50    |
|                                       | (+5)      | 0.72                      | 0.36    | 0.36    | 0.25    |
|                                       | MMA       | 0.71                      | 0.40    | 0.31    | 0.27    |
|                                       | DMA       | -                         | -       | -       | 0.94    |
|                                       | Lab-Diet  |                           |         |         |         |
| Tilapia                               | (+3)      | 0.97                      | 0.41    | 0.56    | 0.023   |
|                                       | (+3)      | 0.85                      | 0.41    | 0.44    | 0.037   |
| Medaka                                | (+3)      | 1.00                      | 0.26    | 0.74    | 0.0     |
| Guppy                                 | (+3)      | 0.15                      | -       | -       | 0.84    |

### Uncertainties

- Most speciation data for marine organisms
- As speciation:
  - 85 to ≥ 90% organic As in marine organisms
  - As species reported in freshwater organisms varies widely
  - Toxicity of As species varies greatly

| Acute Toxicity of As Species                                                                                           |                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| <b>Species</b>                                                                                                         | LD <sub>50</sub> (mg/kg)                                  |  |  |  |
| <ul> <li>Inorganic</li> </ul>                                                                                          | <u></u>                                                   |  |  |  |
| Arsenite (+3)                                                                                                          | 15 to 42*                                                 |  |  |  |
| Arsenate (+5)                                                                                                          | 20 to 200                                                 |  |  |  |
| <ul> <li>Organic         MMA         MMA (+3; i.p.)         DMA         Arsenocholine         Arsenobetaine</li> </ul> | 700 to 1800<br>~30<br>1,200 to 2,600<br>6,500<br>≥ 10,000 |  |  |  |

### Additional Toxicological Considerations

- Toxic Moieties
  - Inorganic As (+3 & +5)
  - MMA & DMA (+3 & +5)
    - +5 reduced to +3 (more toxic form)
- However, As Species and Valence States are not usually determined

## Additional Toxicological Considerations

- Arsenobetaine
  - Metabolically inert (99% excreted as parent)
  - Not cytotoxic
  - No mutagenic activity
- Arsenocholine
  - Mostly metabolized to Arsenobetaine
- Arsenicals do <u>not</u> concentration in human milk
- Seafood ingestion does <u>not</u> increase Inorganic As exposure

### **Summary - Bioaccumulation**

- As bioaccumulates in aquatic organisms, but BAFs are generally small relative to other Persistent, Bioaccumulative Toxicants (e.g., PCBs, methymercury
- As does not appear to biomagnify (BAFs TL2 > TL3 > TL4)

### **Summary - Speciation**

- Limited data indicate that both inorganic and organic As are present in freshwater organisms
- Chemical Speciation Data in Freshwater Fish is Variable
  - Lab data indicate higher % of inorganic As
  - Field data indicate higher % of organic As

### **Summary - Toxicity**

- Valence State (+3 vs. +5) greatly affects toxicity of As
- Arsenobetaine & Arsenocholine have relatively low toxicity

#### **Data Needs**

- Data to Derive Freshwater BAFs
  - Total [As] in Water
  - Total [As] in freshwater organism tissues
  - [As Species] in freshwater organism tissues
- Are there real differences in the inorganic/organic As ratios following field vs. laboratory exposures?
- EPA would appreciate receiving any/all data you may have

#### Technical Summary of Information Available on the Bioaccumulation of Arsenic in Aquatic Organisms (EPA-822-R-03-032) December 2003

- www.epa.gov/waterscience/criteria/arsenic/techsum-bioacc.pdf
- Compilation of data available in the literature (and calculated Species Mean BAFs) for consideration in developing or revising Water Quality Standards
  - Use aquatic species BAFs appropriate for Regional, State or Tribal consumption patterns.
- Does not provide National BAFs

Dr. Tala Henry

Phone: 202-566-1323

Email: henry.tala@epa.gov

Dr. Charles Abernathy Phone: 202-566-1084

Email: abernathy.charles@epa.gov

 EPA's Technical Summary of Information Available on the Bioaccumulation of Arsenic in Aquatic Organisms (EPA-822-R-03-032)

www.epa.gov/waterscience/criteria/arsenic/tech-

sum-bioacc.pdf